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12 Coordinate descent

There are many classes of functions for which it is very cheap to compute directional
derivatives along the standard basis vectors ei, i ∈ [n]. For example,

f (x) = ‖x‖2 or f (x) = ‖x‖1 (1)

This is especially true of common regularizers, which often take the form

R(x) =
n

∑
i=1

Ri(xi) . (2)

More generally, many objectives and regularizes exhibit “group sparsity”; that is,

R(x) =
m

∑
j=1

Rj(xSj) (3)

where each Sj, j ∈ [m] is a subset of [n], and similarly for f (x). Examples of functions
with block decompositions and group sparsity include:

1. Group sparsity penalties;

2. Regularizes of the form R(U>x), where R is coordinate-separable, and U has
sparse columns and so (U>x) = u>i x depends only on the nonzero entries of Ui;
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Figure 1: Example of the bipartite graph between component functions fi, i ∈ [m] and variables
xj, j ∈ [n] induced by the group sparsity structure of a function f : Rn → Rm. An edge between
fi and xj conveys that the ith component function depends on the jth coordinate of the input.

3. Neural networks, where the gradients with respect to some weights can be com-
puted “locally”; and

4. ERM problems of the form

f (x) :=
n

∑
i=1

φi(〈w(i), x〉) (4)

where φi : R→ R, and w(i) is zero except in a few coordinates.

12.1 Coordinate descent

Denote ∂i f = ∂ f
xi

. For each round t = 1, 2, . . . , the coordinate descent algorithm chooses
an index it ∈ [n], and computes

xt+1 = xt − ηt∂it f (xt) · eit . (5)

This algorithm is a special case of stochastic gradient descent. For

E[xt+1|xt] = xt − ηt E[∂it f (xt) · eit ] (6)

= xt −
ηt

n

n

∑
i=1

∂i f (xt) · ei (7)

= xt − ηt∇ f (xt) . (8)

Recall the bound for SGD: If E[gt] = ∇ f (xt), then SGD with step size η = 1
BR satisfies

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6
2BR√

T
(9)
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where R2 is given by maxx∈Ω ‖x− x1‖2
2 and B = maxt E[‖gt‖2

2]. In particular, if we set
gt = n∂xit

f (xt) · eit , we compute that

E[‖gt‖2
2] =

1
n

n

∑
i=1
‖n · ∂xi f (xt) · ei‖2

2 = n‖∇ f (xt)‖2
2 . (10)

If we assume that f is L-Lipschitz, we additionally have that E[‖gt‖2] 6 nL2. This
implies the first result:

Proposition 12.1. Let f be convex and L-Lipschitz on Rn. Then coordinate descent with step
size η = 1

nR has convergence rate

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2LR
√

n/T (11)

12.2 Importance sampling

In the above, we decided on using the uniform distribution to sample a coordinate. But
suppose we have more fine-grained information. In particular, what if we knew that
we could bound supx∈Ω ‖∇ f (x)i‖2 6 Li? An alternative might be to sample in a way
to take Li into account. This motivates the “importance sampled” estimator of ∇ f (x),
given by

gt =
1
pit
· ∂it f (xt) where it ∼ Cat(p1, . . . , pn) . (12)

Note then that E[gt] = ∇ f (xt), but

E[‖gt‖2
2] =

n

∑
i=1

(∂it f (xt))
2/p2

i (13)

6
n

∑
i=1

L2
i /p2

i (14)

In this case, we can get rates

E[ f (
1
T

T

∑
t=1

xt)]−min
x∈Ω

f (x) 6 2R
√

1/T ·
√

n

∑
i=1

L2
i /p2

i (15)

In many cases, if the values of Li are heterogeneous, we can optimize the values of pi.

12.3 Importance sampling for smooth coordinate descent

In this section, we consider coordinate descent with a biased estimator of the gradient.
Suppose that we have, for x ∈ Rn and α ∈ R, the inequality

|∂xi f (x)− ∂xi f (x + αei)| 6 βi|α| (16)
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where βi are possibly heterogeneous. Note that if that f is twice-continuously differen-
tiable, the above condition is equivalent to ∇2

ii f (x) 6 βi, or diag(∇2 f (x)) � diag(β).
Define the distribution pγ via

pγ
i =

β
γ
i

∑n
j=1 β

γ
j

(17)

We consider gradient descent with the rule called RCD(γ)

xt+1 = xt −
1

βit
· ∂it(xt) · eit , where it ∼ pγ (18)

Note that as γ → ∞, coordinates with larger values of βi will be selected more often.
Also note that this is not generally equivalent to SGD, because

E

[
1

βit
∂it(xt)ei

]
=

1
∑n

j=1 β
γ
j
·

n

∑
i=1

β
γ−1
i ∂i f (xt)ei =

1
∑n

j=1 β
γ
j
· ∇ f (xt) ◦ (β

γ−1
i )i∈[n] (19)

which is only a scaled version of ∇ f (xt) when γ = 1. Still, we can prove the following
theorem:

Theorem 12.2. Define the weighted norms

‖x‖2
[γ] :=

n

∑
i=1

x2
i β

γ
i and ‖x‖∗2[γ] :=

n

∑
i=1

x2
i β
−γ
i (20)

and note that the norms are dual to one another. We then have that the rule RCD(γ) produces
iterates satisfying

E[ f (xt)− arg min
x∈Rn

f (x)] 6
2R2

1−γ ·∑
n
i=1 β

γ
i

t− 1
, (21)

where R2
1−γ = supx∈Rn : f (x)6 f (x1)

‖x− x∗‖[1−γ].

Proof. Recall the inequality that for a general βg-smooth convex function g, one has that

g
(

u− 1
βg
∇g(u)

)
− g(u) 6 − 1

2βg
‖∇g‖2 (22)

Hence, considering the functions gi(u; x) = f (x + uei), we see that ∂i f (x) = g′i(u; x),
and thus gi is βi smooth. Hence, we have

f
(

x− 1
βi
∇ f (x)ei

)
− f (x) = gi(0−

1
βg

g′i(0; x))− g(0; x) 6 −
g′i(u; x)2

2βi
= −∂i f (x)2

2βi
.(23)
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Hence, if i pγ, we have

E[ f (x− 1
βi

∂i f (x)ei)− f (x)] 6
n

∑
i=1

pγ
i · −

∂i f (x)2

2βi
(24)

= − 1
2 ∑n

i=1 β
γ
i

n

∑
i=1

βγ−1∂i f (x)2 (25)

= −
‖∇ f (x)‖∗2[1−γ])

2 ∑n
i=1 β

γ
i

(26)

Hence, if we define δt = E[ f (xt)− f (x∗)], we have that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(27)

Moreover, with probability 1, one also has that f (xt+1) 6 f (xt), by the above. We now
continue with the regular proof of smooth gradient descent. Note that

δt 6 ∇ f (xt)
>(xt − x∗)

6 ‖∇ f (xt)‖∗[1−γ]‖xt − x∗‖[1−γ]

6 R1−γ‖∇ f (xt)‖∗[1−γ] .

Putting these things together implies that

δt+1 − δt 6 −
δ2

t
2R2

1−γ ∑n
i=1 β

γ
i

(28)

Recall that this was the recursion we used to prove convergence in the non-stochastic
case. �

Theorem 12.3. If f is in addition α-strongly convex w.r.t to ‖ · ‖[1−γ], then we get

E[ f (xt+1)− arg min
x∈Rn

f (x)] 6

(
1− α

∑n
i=1 β

γ
i

)t

( f (x1)− f (x∗)) . (29)

Proof. We need the following lemma:

Lemma 12.4. Let f be an α-strongly convex function w.r.t to a norm ‖ · ‖. Then, f (x) −
f (x∗) 6 1

2α‖∇ f (x)‖2
∗ .

Proof.

f (x)− f (y) 6 ∇ f (x)>(x− y)− α

2
‖x− y‖2

2

6 ‖∇ f (x)‖∗‖x− y‖2 − α

2
‖x− y‖2

2

6 max
t
‖∇ f (x)‖∗t−

α

2
t2

=
1

2α
‖∇ f (x)‖2

∗ .
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Lemma 12.4 shows that

‖∇ f (xs)‖∗2[1−γ] > 2αδs .

On the other hand, Theorem 12.2 showed that

δt+1 − δt 6 −
‖∇ f (xt)‖∗2[1−γ]

2 ∑n
i=1 β

γ
i

(30)

Combining these two, we get

δt+1 − δt 6 − αδt

∑n
i=1 β

γ
i

(31)

δt+1 6 δt

(
1− α

∑n
i=1 β

γ
i

)
. (32)

Applying the above inequality recursively and recalling that δt = E[ f (xt) − f (x∗)]
gives the result.

�

12.4 Random coordinate vs. stochastic gradient descent

What’s surprising is that RCD(γ) is a descent method, despite being random. This is
not true of normal SGD. But when does RCD(γ) actually do better? If γ = 1, the savings
are proportional to the ratio of ∑i=1 βi/β · (Tcoord/Tgrad). When f is twice differentiable,
this is the ratio of

tr(maxx∇2 f (x))
‖maxx∇2 f (x)‖op

(Tcoord/Tgrad) (33)

12.5 Other extensions to coordinate descent

1. Non-Stochastic, Cyclic SGD

2. Sampling with Replacement

3. Strongly Convex + Smooth!?

4. Strongly Convex (generalize SGD)

5. Acceleration? See [TVW+17]
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