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12 Coordinate descent

There are many classes of functions for which it is very cheap to compute directional
derivatives along the standard basis vectors ¢;,i € [n]. For example,

fl) = lxl> or  fx) =llx] 1)

This is especially true of common regularizers, which often take the form

R(x) =) Ri(xi). ()
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More generally, many objectives and regularizes exhibit “group sparsity”; that is,

=z

R(x) =) Rj(xs;) (3)
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where each S;,j € [m] is a subset of [n], and similarly for f(x). Examples of functions
with block decompositions and group sparsity include:

1. Group sparsity penalties;

2. Regularizes of the form R(U'x), where R is coordinate-separable, and U has
sparse columns and so (U ' x) = u; x depends only on the nonzero entries of Uj;
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Figure 1: Example of the bipartite graph between component functions f;,i € [m] and variables
xj,j € [n] induced by the group sparsity structure of a function f : R" — R™. An edge between
fi and x; conveys that the ith component function depends on the jth coordinate of the input.

3. Neural networks, where the gradients with respect to some weights can be com-
puted “locally”; and

4. ERM problems of the form
f(0) =} (@, x)) 4)

where ¢; : R — R, and w'!) is zero except in a few coordinates.

12.1 Coordinate descent

Denote 0;f = 9 Foreachround t = 1,2,. .., the coordinate descent algorithm chooses
an index i; € [ ] and computes
Xep1 = Xt — 1:0;, f(x¢) - €, . )
This algorithm is a special case of stochastic gradient descent. For
Elxiy1|xt] = xe = E[0;, f (xt) - €] (6)
- no %i_}":laiﬂxt) » )
= =1V f(x). ®)

Recall the bound for SGD: If E[g;] = V f(x;), then SGD with step size 7 = 7% satisfies

th —min f(x) < 2\1/3; 9)

xeq)
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where R? is given by maxycq ||x — x1]|5 and B = max; E[||g¢/|3]. In particular, if we set
Q= naxit f(xt) - ej,, we compute that

E[llg:l2] = Z I 0x f (x2) - el = ml[V f(x) 17 (10)

If we assume that f is L-Lipschitz, we additionally have that [E[||¢:||?] < nL?. This
implies the first result:

Proposition 12.1. Let f be convex and L-Lipschitz on R". Then coordinate descent with step
size 1] = % has convergence rate

T
%Z — min f(x) <2LRVn/T (11)

xeQ)

12.2 Importance sampling

In the above, we decided on using the uniform distribution to sample a coordinate. But
suppose we have more fine-grained information. In particular, what if we knew that
we could bound sup,..(, || Vf(x)i|l2 < L;? An alternative might be to sample in a way
to take L; into account. This motivates the “importance sampled” estimator of V f(x),
given by

1

0= 04 (x) where i ~ Cat(py, ..., ). 12)
1t

Note then that E[g;] = Vf(x;), but

(9, f (x0))?/ pi (13)

M:

E[llgl2] =

N
I
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L7/ p? (14)
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In this case, we can get rates
1T n
Ef(fgxt)] — min f(x) <2RV1/T- ;L?/P? (15)
In many cases, if the values of L; are heterogeneous, we can optimize the values of p;.

12.3 Importance sampling for smooth coordinate descent

In this section, we consider coordinate descent with a biased estimator of the gradient.
Suppose that we have, for x € R"” and a € R, the inequality

|0x,f (%) — 9 f (x + ae;)| < Bilar] (16)
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where B; are possibly heterogeneous. Note that if that f is twice-continuously differen-
tiable, the above condition is equivalent to V2f(x) < B;, or diag(V?f(x)) < diag(B).
Define the distribution p? via

i 17
pi - n % ( )
j=1P]
We consider gradient descent with the rule called RCD(y)
1 .
Xpp1 = Xt — ﬁ_ - 0;,(x¢) - ¢j,, where iy ~ p7 (18)
1t

Note that as y — o0, coordinates with larger values of B; will be selected more often.
Also note that this is not generally equivalent to SGD, because

1 1 1 _ 1 _
E |:13_itait(xt)ei:| = 7:—1571;[57 Yif (xr)ei = ?:—1[37 V() o (B Diep (19)

which is only a scaled version of V f(x;) when 7y = 1. Still, we can prove the following
theorem:

Theorem 12.2. Define the weighted norms

n

I, = Y 287 and x| 2 == Y 26, 0)
=1 i=1

and note that the norms are dual to one another. We then have that the rule RCD(+y) produces
iterates satisfying

2 ym g7
E[f (x;) — arg min f(x)] < 2Ry, Lim By

, 21
xeR" t—1 21)

where R%—”r = SUPern: f(x)<f(xy) 1¥ = X* |1y

Proof. Recall the inequality that for a general S¢-smooth convex function g, one has that

b
2B

Hence, considering the functions g;(u; x) = f(x + ue;), we see that 0;f(x) = gi(u; x),
and thus g; is ; smooth. Hence, we have

1 ) )
g(u 5ng<u>) g(1) < 2 || Vg| @)

Ty ()2
f (x - %Vf(X)ei) — f(x) = gi(0 — ﬁiggf(O;X)) —8(0;x) < —g’(;Tx) = —% (23)



Hence, if i p?, we have

n . 2
E[f(x— ~aif(x)es) — f(x)] < 3 p7 -2 ) 24)
3 26,
1 LC _
= —m;m 19, (x)? (25)
IVFE)I2)
) v 1 (26)

Hence, if we define §; = E[f(x;) — f(x*)], we have that
IV FGa) 2
2y B!

Moreover, with probability 1, one also has that f(x;1) < f(x¢), by the above. We now
continue with the regular proof of smooth gradient descent. Note that

& < Vf(x) ' (x—x)
< VAl — el
< R IVFG) I, -
Putting these things together implies that

(27)

Opp1 — 0 < —

52
041 —0r < — t (28)
ZR%ff)/ ?:1 187
Recall that this was the recursion we used to prove convergence in the non-stochastic
case. |
Theorem 12.3. If f is in addition a-strongly convex w.r.t to || - |1, then we get
t
. « .
Elf(xp1) —arg min £(x)] < (1- = | (F(x1) - F(x")). (29)
*eR i=1B;
Proof. We need the following lemma:
Lemma 12.4. Let f be an a-strongly convex function w.r.t to a norm || - ||. Then, f(x) —
f*) < 5lIVALIZ
Proof.
bt
f)=fly) < Vi) (x—y)—5lx—yl3
bt
< NIVF@llx = yl* = S llx - yli3
< max [ Vf ()]t — 512
_ 1 2
= 2 V@2
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Lemma 12.4 shows that
IVf(xs) [y > 2065 -
On the other hand, Theorem 12.2 showed that

IVl

S — 0 < — (30)

2511 Bl

Combining these two, we get
L)
01— 0 < —=pm (31)
i=1 B

b

Op1 < O |1—=— ] - (32)
( Y1 ﬁ?)

Applying the above inequality recursively and recalling that ; = E[f(x;) — f(x*)]
gives the result.
[ ]

12.4 Random coordinate vs. stochastic gradient descent

What's surprising is that RCD(y) is a descent method, despite being random. This is
not true of normal SGD. But when does RCD(y) actually do better? If v = 1, the savings
are proportional to the ratio of Y ;1 Bi/B - (Teoord/ Tgrad)- When f is twice differentiable,
this is the ratio of

tr(max, V2f(x))
| maxy V2£ (x)lop

( Teoora/ Tgrad) (33)

12.5 Other extensions to coordinate descent

1. Non-Stochastic, Cyclic SGD

2. Sampling with Replacement

[&Y)

. Strongly Convex + Smooth!?

W

. Strongly Convex (generalize SGD)
5. Acceleration? See [TVW "17]
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